Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Methane (CH4) oxidation is an important reaction to reduce the greenhouse effect caused by incomplete combustion of CH4. Here, we explored the mechanism of CH4 oxidation catalyzed by CeO2 and Ni-doped CeO2, focusing on the redox properties of these catalyst surfaces, using density functional theory (DFT). We found that the barriers for CH4* activation and H2O* formation are correlated with the surface redox capacity, which is enhanced by Ni doping. Furthermore, the complete reaction mechanism is explored by DFT calculations and microkinetic simulations on bare and Ni-doped CeO2 surfaces. Our calculations suggest that the doping of Ni leads to a much higher overall reactivity, due to a balance between the CH4* activation and H2O* formation steps. These results provide insights into the CH4 oxidation mechanism and the intrinsic relationship between redox properties and the activity of CeO2 surfaces.more » « lessFree, publicly-accessible full text available November 7, 2025
-
Flat bands and nontrivial topological physics are two important topics of condensed matter physics. With a unique stacking configuration analogous to the Su–Schrieffer–Heeger model, rhombohedral graphite (RG) is a potential candidate for realizing both flat bands and nontrivial topological physics. Here, we report experimental evidence of topological flat bands (TFBs) on the surface of bulk RG, which are topologically protected by bulk helical Dirac nodal lines via the bulk-boundary correspondence. Moreover, upon in situ electron doping, the surface TFBs show a splitting with exotic doping evolution, with an order-of-magnitude increase in the bandwidth of the lower split band, and pinning of the upper band near the Fermi level. These experimental observations together with Hartree–Fock calculations suggest that correlation effects are important in this system. Our results demonstrate RG as a platform for investigating the rich interplay between nontrivial band topology, correlation effects, and interaction-driven symmetry-broken states.more » « less
-
Polar metals have recently garnered increasing interest because of their promising functionalities. Here we report the experimental realization of an intrinsic coexisting ferromagnetism, polar distortion and metallicity in quasi-two-dimensional Ca3Co3O8. This material crystallizes with alternating stacking of oxygen tetrahedral CoO4 monolayers and octahedral CoO6 bilayers. The ferromagnetic metallic state is confined within the quasi-two-dimensional CoO6 layers, and the broken inversion symmetry arises simultaneously from the Co displacements. The breaking of both spatial-inversion and time-reversal symmetries, along with their strong coupling, gives rise to an intrinsic magnetochiral anisotropy with exotic magnetic field-free non-reciprocal electrical resistivity. An extraordinarily robust topological Hall effect persists over a broad temperature–magnetic field phase space, arising from dipole-induced Rashba spin–orbit coupling. Our work not only provides a rich platform to explore the coupling between polarity and magnetism in a metallic system, with extensive potential applications, but also defines a novel design strategy to access exotic correlated electronic states.more » « less
An official website of the United States government
